Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros

Base de dados
Tópicos
Ano de publicação
Tipo de documento
Intervalo de ano
1.
Biomed Pharmacother ; 162: 114702, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-2295337

RESUMO

BACKGROUND: Vaccination is the most effective way to prevent coronavirus disease 2019 (COVID-19). However, it is often less protective and does not significantly increase antibody levels, especially in individuals with impaired immune systems. Nevertheless, the immunocompetence can be enhanced using a natural immunomodulator, such as Dendrobium officinale aqueous extract (DoAE). METHODS: To determine whether DoAE promotes antibody production, we treated healthy volunteers with DoAE during COVID-19 vaccination. Meanwhile, the control volunteers were given a placebo (cornstarch) during the vaccination. Antibody levels were measured at three-week intervals in the DoAE and control groups. RESULTS: DoAE enhanced immunity and preserved immune cell homeostasis. However, the neutralizing antibody (nAb) levels in the DoAE group were lower than those in the control group. Analysis of the gut microbiota revealed that the abundance of anti-inflammatory flora was increased, while the pro-inflammatory flora was reduced in the DoAE group. CONCLUSION: DoAE has immunomodulatory and anti-inflammatory properties. Therefore, DoAE has the potential for COVID-19 prophylaxis, treatment, and recovery from the adverse effects of COVID-19. However, its anti-inflammatory activity affects the production of nAbs. Thus, DoAE may not be recommended for consumption during COVID-19 vaccination.


Assuntos
COVID-19 , Dendrobium , Humanos , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , SARS-CoV-2 , Vacinação
2.
Int J Biol Sci ; 18(7): 3066-3081, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1893288

RESUMO

During the development of COVID-19 caused by SARS-CoV-2 infection from mild disease to severe disease, it can trigger a series of complications and stimulate a strong cellular and humoral immune response. However, the precise identification of blood immune cell response dynamics and the relevance to disease progression in COVID-19 patients remains unclear. We propose for the first time to use changes in cell numbers to establish new subgroups, which were divided into four groups: first from high to low cell number (H_L_Group), first from low to high (L_H_Group), continuously high (H_Group), and continuously low (L_Group). It was found that in the course of disease development. In the T cell subgroup, the immune response is mainly concentrated in the H_L_Group cell type, and the complications are mainly in the L_H_Group cell type. In the NK cell subgroup, the moderate patients are mainly related to cellular immunity, and the severe patients are mainly caused by the disease, while severe patients are mainly related to complications caused by diseases. Our study provides a dynamic response of immune cells in human blood during SARS-CoV-2 infection and the first subgroup analysis using dynamic changes in cell numbers, providing a new reference for clinical treatment of COVID-19.


Assuntos
COVID-19 , Progressão da Doença , Humanos , Imunidade Celular , Imunidade Humoral , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA